Key Benefits

Direct analysis of auto exhaust (no drying required)

Real-time quantitative analysis

Wide linear range

Wide dynamic range

Robust

Easy to use

Real-Time Analysis of Automobile Exhaust Emissions, Using Syft SIFT-MS

SIFT-MS provides real-time, humidityindependent analysis of diverse combustion products over wide linearity and dynamic ranges, making it eminently suitable for direct analysis of motor vehicle tail-pipe emissions.

Despite improvements in fuels, engines and catalytic converters, emissions of volatile organic compounds (VOCs) from motor vehicles remain a significant source of pollution in urban areas, and under appropriate conditions result in formation of photochemical smog. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) offers a unique ability to study motor vehicle emissions, because it can analyze individual VOCs and certain inorganic gases (such as NO and NO₂) in real-time, even at high humidity.

In this study most compounds were quantified using multiple reagent ions, which allowed the best reagent ion — product ion combinations to be selected. By minimizing interferences, SIFT-MS maximizes selectivity and accuracy.

Table 1 provides a brief overview of two gasoline-powered vehicles that had emissions analyzed using a Syft Technologies Voice200 SIFT-MS instrument. Exhaust gases were diluted 50% with ambient air and drawn continuously through PVC tubing using a small batterypowered pump. The SIFT-MS instrument extracted only a fraction of this gas for analysis. Blanks were analyzed by pumping outdoor ambient air through the same length of tubing and were subtracted from the data presented here.

Figures 1 and 2 show the results of real-time analysis of the exhaust gases of the two vehicles. For clarity, the figures show different classes of compounds. These data were obtained for cars from a near-cold start, the engines at low revolutions and without load for the duration of the analysis. The engine of each car was maintained at consistent revolutions. The data reveal very different VOC profiles — both in terms of relative and absolute abundances, and in terms of temporal changes in the data.

The real-time, broad-spectrum, humidity-independent analysis provided by SIFT-MS makes it ideally suited to direct analysis of VOCs in motor vehicle tail-pipe emissions. The Syft Voice200 SIFT-MS solution provides a robust, easy to operate package for sensitive, quantitative analysis over a wide dynamic range. A REAL PROPERTY

Experimental Method

Sample	Auto exhaust gas ¹
Accessories	Glass T piece at exhaust; sampling pump drawing sample at 3 L min-1; 3 meters of ¼" i.d. PVC tubing ²

 Diluted 50% with ambient air through the T-piece

2. Residence time of <2 seconds.

SIFT-MS Analysis

Instrument	Voice200	
mstrument	10100200	
Inlet type	High performance	
Sample flow	45 sccm	
Software	Voice200 & LabSyft	
Analysis type	Selected Ion Mode	
Reagent ions	H ₃ 0 ⁺ , N0 ⁺ , 0 ₂ ⁺	
Compounds ¹	29 in total, including aromatic and aliphatic hydrocarbons, aldehydes, ketones, alcohols, nitrogen oxides and hydrogen cyanide	
Dwell time per mass	100 ms per measurement cycle	
Data time resolution	10 seconds	
Typical LOD ²	0.5 pptv	

Further Reading

Syft Whitepaper SIFT-MS: A Significant New Tool for Real-Time Air Quality Monitoring

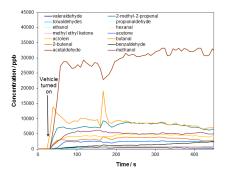
Syft Brochure LabSyft: Laboratory Software for SIFT-MS Applications

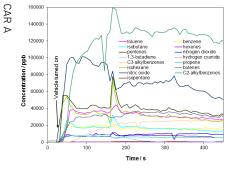
Syft Brochure Real Solutions

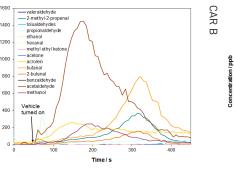
Syft Brochure Mobile Analysis of VOCs Made Simple

B.J. Prince, D.B. Milligan, M.J. McEwan (2010), *Application of [SIFT-MS] to real-time atmospheric monitoring* Rapid Commun. Mass Spectrom. 24, 1763.

D. Smith, P. Spanel (2005). *[SIFT-MS] for* on-line trace gas analysis, Mass Spec. Rev, 24, 661-700.


Table 1: Details of the motor vehicles tested in this study.


* *


Manufacturer and Model	Subaru Legacy	Nissan Murano
Identification in this report	Car A	Car B
Year of manufacture	2000	2005
Displacement (cubic centimeters)	2500	3500
Odometer reading in kilometers (miles)	131000 (82000)	22000 (14000)
Catalytic converter fitted	No	Yes
Time elapsed since previous use*	2 hrs	2 hrs
Engine RPM (at start and end of experiment)	1500	1500 - 1250

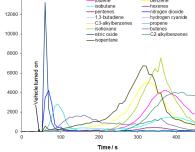

* Apart from shifting the vehicle into the testing park space

Figure 1: Real-time concentrations of various oxygenated compounds in the exhaust gases emitted by (a) car A and (b) car B (see Table 2), determined using SIFT-MS. Figure 2: Real-time concentrations of selected hydrocarbons and nitrogencontaining compounds in the exhaust gases emitted by (a) car A and (b) car B (see Table 2), determined using SIFT-MS.

Copyright © 2014 Syft Technologies Ltd APN-016-01.0

