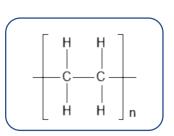
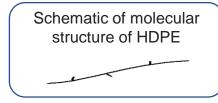
## Synthetic/biopolymer grinding applications using IQ MILL-2070

| Syn              | Synthetic polymers                        |       | Brittle<br>temp. <sup>1)</sup> | Glass<br>transition<br>temp. <sup>2)</sup> | Melting point <sup>2)</sup> | Tensile<br>strength <sup>2)</sup> |
|------------------|-------------------------------------------|-------|--------------------------------|--------------------------------------------|-----------------------------|-----------------------------------|
|                  |                                           |       | (°C)                           | (°C)                                       | (°C)                        | (GPa)                             |
| IQ MILL_Poly_001 | High density polyethylene                 | HDPE  | -100                           | -120                                       | 127                         | 0.022                             |
| IQ MILL_Poly_002 | Low density polyethylene                  | LDPE  | -80                            | -58                                        | 70                          | 0.0145                            |
| IQ MILL_Poly_003 | Polypropylene                             | PP    | 0                              | -1                                         | 163                         | 0.032                             |
| IQ MILL_Poly_004 | Polystyrene                               | PS    | 20                             | 98                                         | 255                         | 0.034                             |
| IQ MILL_Poly_005 | Polycarbonate                             | PC    | -135                           | 148                                        | 230                         | 0.062                             |
| IQ MILL_Poly_006 | Polyvinyl chloride                        | PVC   | -20                            | 80                                         | 212                         | 0.036                             |
| IQ MILL_Poly_007 | Polyvinylidene chloride                   | PVDC  | -20                            | -20                                        | 200                         | 0.026                             |
| IQ MILL_Poly_008 | Acrylonitrile butadiene styrene copolymer | ABS   | -20                            | 101                                        | 223                         | 0.043                             |
| IQ MILL_Poly_009 | Silicone rubber                           | PDMS  | NA                             | -123                                       | -46                         | 0.004                             |
| IQ MILL_Poly_010 | Polymethyl methacrylate                   | PMMA  | NA                             | 108                                        | 157                         | 0.045                             |
| IQ MILL_Poly_011 | Polyisoprene (natural rubber)             | NR    | NA                             | -65                                        | 35.5                        | 0.0058                            |
| IQ MILL_Poly_012 | Ethylene-vinyl acetate copolymer          | EVA   | -100                           | -15                                        | 80                          | 0.0137                            |
| IQ MILL_Poly_013 | Polyethylene terephthalate                | PET   | NA                             | 77                                         | 253                         | 0.1079                            |
| IQ MILL_Poly_014 | Polytetrafluoroethylene                   | PTFE  | <-100                          | 120                                        | 329                         | 0.022                             |
| IQ MILL_Poly_015 | Ethylene tetrafluoroethylene copolymer    | ETFE  | -104                           | -113                                       | 270                         | 0.045                             |
| IQ MILL_Poly_016 | Nylon 6                                   | N-6   | -40                            | 52                                         | 221                         | 0.061                             |
| IQ MILL_Poly_017 | Nylon 6,6                                 | N-66  | -50                            | 58                                         | 262                         | 0.055                             |
| IQ MILL_Poly_018 | Polyurethane                              | PU    | NA                             | -50                                        | 120                         | 0.048                             |
| IQ MILL_Poly_019 | Polyetheretherketone                      | PEEK  | NA                             | 148                                        | 340                         | 0.097                             |
| IQ MILL_Poly_020 | Polyetherimide                            | PEI   | NA                             | 217                                        | NA                          | 0.088                             |
| IQ MILL_Poly_021 | Copy paper                                | Paper | NA                             | NA                                         | NA                          | NA                                |
| IQ MILL_Poly_022 | Electronic circuit boards                 | Board | NA                             | NA                                         | NA                          | NA                                |


|                   | Biopolymer                |                        |  |  |  |  |  |
|-------------------|---------------------------|------------------------|--|--|--|--|--|
| IQ MILL_Bio_001-1 | Boar canines              | Teeth                  |  |  |  |  |  |
| IQ MILL_Bio_001-2 | Fox, raccoon, raccoon dog | Teeth                  |  |  |  |  |  |
| IQ MILL_Bio_002   | Shellfish                 | Shellfish shell        |  |  |  |  |  |
| IQ MILL_Bio_003   | Bark of moso bamboo       | Bamboo bark            |  |  |  |  |  |
| IQ MILL_Bio_004   | Hemp cord                 | Hemp                   |  |  |  |  |  |
| IQ MILL_Bio_005   | Wood chip                 | Wood                   |  |  |  |  |  |
| IQ MILL_Bio_006   | Cotton                    | Cotton                 |  |  |  |  |  |
| IQ MILL_Bio_007   | Dried squid               | Dry squid              |  |  |  |  |  |
| IQ MILL_Bio_008   | Beef jerky                | Beef jerky             |  |  |  |  |  |
| IQ MILL_Bio_009   | Shell strap               | Shellfish string       |  |  |  |  |  |
| IQ MILL_Bio_010   | Sea squirt                | Sea squirt             |  |  |  |  |  |
| IQ MILL_Bio_011   | Seaweed stem              | Wakame<br>seaweed stem |  |  |  |  |  |

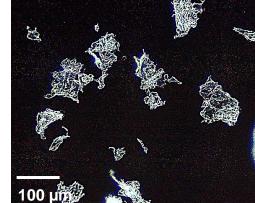



Cryogenic Mill IQ MILL-2070

**Characteristics**: HDPE or PE-HD is a crystalline thermoplastic resin consisting of linearly bonded repeating units of ethylene with few branches. It is also called rigid polyethylene because of its hardness compared to other polyethylene (PE).

**Application**: Films and sheets such as shopping bags, blue sheets, etc., also fibers that have been strengthened by stretching (fishnets, screen doors, leisure sheets, etc.).






| Sample Room temp. /Cryogenic |           | Sample container      | Grinding ball |  |
|------------------------------|-----------|-----------------------|---------------|--|
| 0.48                         | Cryogenic | Sample container L-Ti | WC-12Φ        |  |

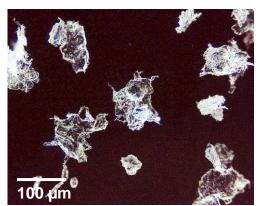
Grinding conditions: 2500 rpm

(<40 mesh, Yield: 55 %)

Ground to a particle size of approx. 100 µm



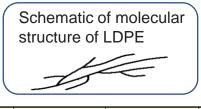
### Cryogenic grinding

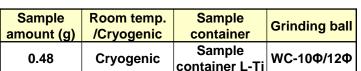

| Milling Grinding speed time |       | Pause<br>time | No. of cycles | No. of repetitions |
|-----------------------------|-------|---------------|---------------|--------------------|
| (rpm)                       | (sec) | (sec)         | (Cycle)       |                    |
| 2500/3000                   | 20    | 20            | 2             | 3                  |

HDPE 0.48 g

Pretreatment: Cut in half with nippers

Grinding conditions: 3000 rpm


(<40 mesh, Yield: 68 %)



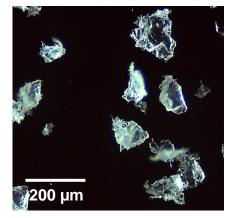

\*40 mesh= 0.42 mm opening

**Characteristics**: Low density polyethylene (LDPE) is a synthetic resin consisting of randomly branched repeating units of ethylene. It is also called soft polyethylene because of its softness compared to other polyethylenes, or high-pressure polyethylene because of its manufacturing process.

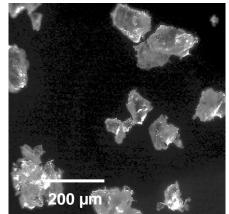
**Application**: Packaging materials (simple packaging for confectionery and clothing, garbage bags, packaging for fresh food, cushioning materials), black agricultural film, sanitary gloves, watering hoses, Tupperware, etc.



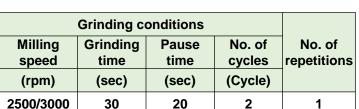



**Cryogenic grinding** 




Grinding ball: WC-12Φ

Grinding ball: WC-10Φ

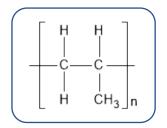

Ground to a particle size of approx. 100-200 µm (<40 mesh, yield: 85 %)



Ground to a particle size of approx. 100-200 µm (<40 mesh, yield: 78 %)



LDPE 0.48 g





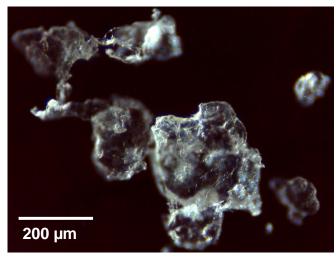

\* 40 mesh= 0.42 mm opening

**Characteristics**: Nylon 6,6 is a polyamide with higher heat resistance and mechanical strength than nylon 6, with a melting point around 265 °C and specific gravity of 1.14. It is one of the strongest materials among engineering plastics. In addition to heat resistance, it has excellent oil resistance, wear resistance, and lubricating properties.

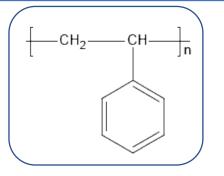
Application: Textiles for clothing, airbags, bearings, liners, rollers, gears, insulating parts, etc.

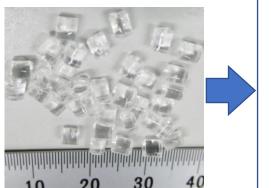





PP 0.61 g

| Sample<br>amount (g) | Room temp. /Cryogenic | Sample container       | Grinding ball |
|----------------------|-----------------------|------------------------|---------------|
| 0.58                 | Cryogenic             | Sample container I -Ti | WC-12Φ        |

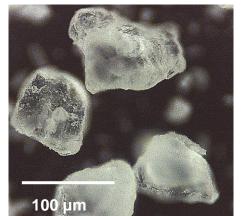

### **Cryogenic grinding**


| Milling |       |       |         |             |
|---------|-------|-------|---------|-------------|
| speed   | time  | time  | cycles  | repetitions |
| (rpm)   | (sec) | (sec) | (Cycle) |             |
| 3000    | 30    | 20    | 2       | 1           |

Ground to a particle size of about 100-200 µm (<40 mesh, yield: 88 %)



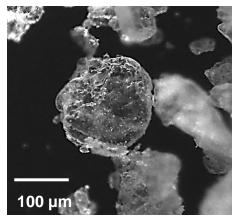
\*40 mesh= 0.42 mm opening






PS 1.0 g

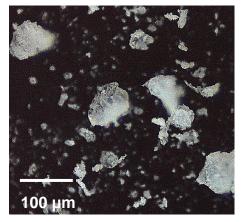
### **Cryogenic grinding** (-196 °C)


Grinding time: 30 sec Pause: 10sec No. of cycles: 2 Repetition: 1 Yield (> 40 mesh : 0 %) (40-60 mesh: 4.8 %) (< 60 mesh : 95.2 %)



### Room temp. dry (23 °C)

Grinding time: 30 sec Pause: 60sec No. of cycles: 10 Repetition: 2 Yield (> 40 mesh : 6.0 %) (40-60 mesh: 19.3%)


(< 60 mesh : 74.7 %)



### Room temp. wet (23 °C, methanol 1.5 mL)

Grinding time: 30 sec Pause: 60sec No. of cycles: 10 Repetition: 2

Yield (> 40 mesh : 0.2 %) (40-60 mesh: 5.4 %) (< 60 mesh : 94.4 %)



\*40 mesh= 0.42 mm opening, 60 mesh= 0.25 mm opening

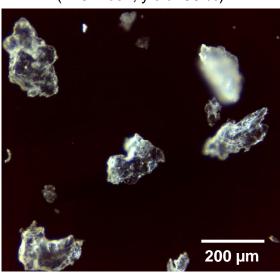
- In cryogenic grinding, the particle size is about 100 µm.
- In room temperature dry grinding, the particle size is mainly about 100 µm. (The particles cannot be smaller than this due to aggregation caused by static electricity.)
- In room temperature dry grinding, the sample container and grinding ball heat is dissipated at Pause time of 60 sec, but when Pause time is 0 sec, the PS particles are heated by the impact of the sample container and the Grinding ball and clump together.
- In room temperature wet grinding with methanol, particles of 10 µm-50 µm were observed. This may be due to the relaxation of the charges between particles by methanol.

|   | Sample     | Room temp./Cryogenic            | Sample<br>container   | Grinding ball | Milling<br>speed | Grinding<br>time | Pause time | No. of cycles | No. of repetitions |
|---|------------|---------------------------------|-----------------------|---------------|------------------|------------------|------------|---------------|--------------------|
| L | amount (g) |                                 | Container             | _             | (rpm)            | (sec)            | (sec)      | (Cycle)       | repetitions        |
|   | 1.0        | Room temp.(dr/wet)<br>Cryogenic | Sample container L-Ti | Zr-12Φ        | 3000             | 30               | 10, 60     | 1, 10         | 2                  |

**Characteristics**: Polycarbonate resin (PC) is an engineering plastic with high transparency, self-extinguishing properties, and the highest impact resistance of any plastic. With transparency comparable to that of glass, PC is also used in camera lenses.



PC 0.5 g Pretreatment: cut in half with nippers


### Cryogenic grinding

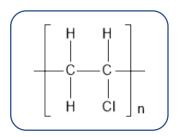
### Room temp. grinding

(The same grinding conditions as Cryogenic grinding used. Although the sample was slightly ground, flat plates of about 0.2 mm in size were obtained. Also, the grinding ball became very hot.)



(<40 mesh, yield: 80 %)




\*40 mesh= 0.42 mm opening

- In room temperature grinding, the impact of the grinding ball causes to raise the PC temperature, making the sample flat in shape and impossible to grind.
- In cryogenic grinding, particles of about 200 µm in size can be obtained.

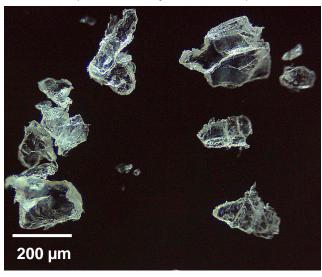
| Sample<br>amount (g) | Room temp./Cryogenic | Sample container      | Grinding ball | Milling<br>speed<br>(rpm) | Grinding<br>time<br>(sec) | Pause time (sec) | No. of<br>cycles<br>(Cycle) | No. of repetitions |
|----------------------|----------------------|-----------------------|---------------|---------------------------|---------------------------|------------------|-----------------------------|--------------------|
| 0.5                  | Room temp./Cryogenic | Sample container L-Ti | WC-12Ф        | 3000                      | 30                        | 10               | 10                          | 1, 2               |

**Characteristics**: PVC (PVC) has excellent chemical resistance, corrosion resistance, and insulating properties, and is an inexpensive polymer among plastic materials. Although it is vulnerable to low and high temperatures, it is used in a wide range of applications because it is inexpensive for its many advantages.

Application: It is used for building materials such as water and sewage pipes and corrugated sheets, and leather for furniture. It is often found in familiar places.



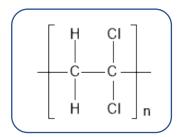



PVC thin plates 0.55 g

| Sample amount (g) | Room temp.<br>/Cryogenic | Sample container      | Grinding ball |
|-------------------|--------------------------|-----------------------|---------------|
| 0.55              | Cryogenic                | Sample container L-Ti | WC-12Φ        |

### **Cryogenic grinding**

| Milling<br>speed | 9   9 |       |         | No. of repetitions |
|------------------|-------|-------|---------|--------------------|
| (rpm)            | (sec) | (sec) | (Cycle) |                    |
| 3000             | 20    | -     | 1       | -                  |


(<40 mesh, yield: 100 %)



\*40 mesh= 0.42 mm opening

**Characteristics**: Polyvinylidene chloride (PVDC) features high barrier to block both oxygen and moisture. This is an outstanding feature not found in other plastics and resins.

**Application**: Typical applications for PVDC include food packaging films such as wraps, ham, and sausages. Because of its excellent barrier properties, it can prevent unpleasant odors mixed with food odors from filling refrigerators and can also delay oxidation of wrapped foods to prolong the life of the foods. It also has a high heat and tear resistances.





|                                                                                                                 | aı  |
|-----------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                 | ab. |
| Per Salah |     |
|                                                                                                                 |     |
|                                                                                                                 |     |
|                                                                                                                 |     |
|                                                                                                                 |     |

*ուսել*ովուսևումությերը և հայերակումիունու

PVDC 0.38 g


(10 µm thick)

Sample Room temp. Sample **Grinding ball** /Cryogenic mount (g) container Sample WC-12Φ 0.38 Cryogenic container L-Ti

**Cryogenic grinding** 

| Milling | No. of |             |         |             |
|---------|--------|-------------|---------|-------------|
| speed   | time   | time cycles |         | repetitions |
| (rpm)   | (sec)  | (sec)       | (Cycle) |             |
| 3000    | 30     | -           | 1       | -           |

(<40 mesh, yield: 100 %)



\*40 mesh= 0.42 mm opening



**Characteristics**: ABS resin is a copolymer of acrylonitrile, butadiene, and styrene, and is a thermoplastic, amorphous general-purpose resin. The material color is light skin-colored, and it has an excellent balance of mechanical properties such as rigidity, hardness, workability, impact resistance, and bending fatigue.

**Application**: Mainly for various exterior, housing, and mechanical parts of home appliances and electrical and electronic products, interior parts such as automobile panels, stationery and miscellaneous goods, office furniture components, brush handles, etc.

$$\begin{array}{c|c}
 & \leftarrow \text{CH}_2 - \text{CH} \longrightarrow \text{CH}_2 - \text{CH} = \text{CH} - \text{CH}_2 \longrightarrow \text{CH}_2 - \text{CH} \longrightarrow \text{CH}_2 \longrightarrow$$



ABS 0.53 g

| Sample<br>amount (g) | Room temp. /Cryogenic | Sample container       | Grinding ball |
|----------------------|-----------------------|------------------------|---------------|
| 0.53                 | Cryogenic             | Sample container I -Ti | WC-12Φ        |

### **Cryogenic grinding**

| Milling | Grinding | Pause | No. of  | No. of      |
|---------|----------|-------|---------|-------------|
| speed   | time     | time  | cycles  | repetitions |
| (rpm)   | (sec)    | (sec) | (Cycle) |             |
| 3000    | 30       | 20    | 2       | 1           |

Ground to a particle size of approx. 100 µm (<60 mesh, yield: 91 %)



\*60 mesh= 0.25 mm opening

**Characteristics**: Silicone is a general term for synthetic polymer compounds that have a main skeleton of siloxane bonds. Generally, it is colorless, odorless, and has water repellency, and is oil resistant, oxidation resistant, and heat resistant compared to the corresponding carbon skeleton polymer. Since it has the properties of a metal oxide (base), it is weak against strong acids and easily deteriorates (bleaching, embrittlement).

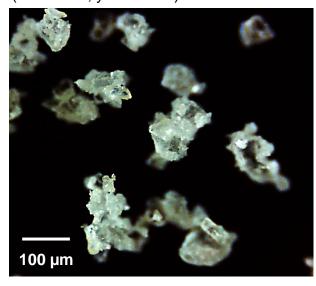
**Application**: PDMS is used in a wide range of familiar and industrial applications, including contact lenses, medical devices, caulking agents, lubricants, and microfluidics.

$$\begin{pmatrix}
H_{3}C & CH_{3} \\
H_{3}C - Si - Si - O - Si - CH_{3} \\
 & CH_{3}
\end{pmatrix}$$

$$\begin{pmatrix}
H_{3}C & CH_{3} \\
H_{3}C & CH_{3}
\end{pmatrix}$$

$$\begin{pmatrix}
H_{3}C & CH_{3} \\
H_{3}C & CH_{3}
\end{pmatrix}$$

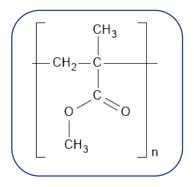



PDMS 0.55 g

| Sample amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|-------------------|-----------------------|-----------------------|---------------|
| 0.55              | Cryogenic             | Sample container L-Ti | WC-12Ф        |

### Cryogenic grinding

| Milling speed | Grinding time | Pause time | No. of cycles | No. of repetitions |
|---------------|---------------|------------|---------------|--------------------|
| (rpm)         | (sec)         | (sec)      | (Cycle)       |                    |
| 3000          | 20            | 20         | 2             | 1                  |


Ground to a particle size of approx. 100 µm (<40 mesh, yield: 71 %)



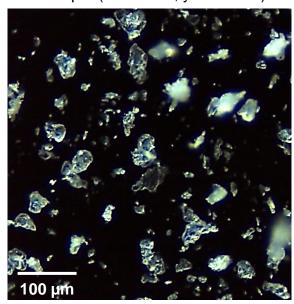
\*40 mesh= 0.42 mm opening

Characteristics: Polymethacrylic acid ester resin (acrylic resin) has high transparency and impact resistance and is easy to form and color thermoplastics.

**Application**: As a substitute for inorganic glass, it is used for windows of buildings and vehicles, lighting fixture covers, lantern signs, road signs, daily necessities, office supplies, crafts, watch crystals, etc.



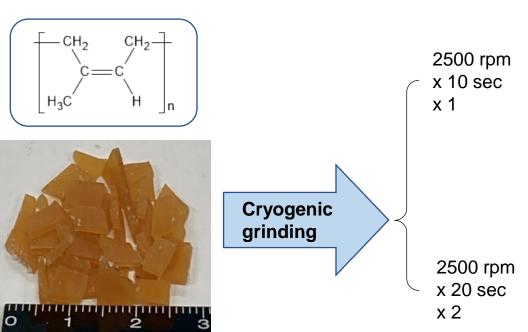



PMMA 0.58 g

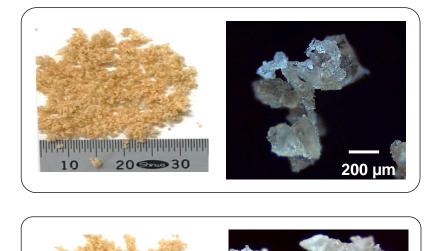
| Sample amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|-------------------|-----------------------|-----------------------|---------------|
| 0.58              | Cryogenic             | Sample container L-Ti | WC-12Ф        |

### **Cryogenic grinding**

| Milling<br>speed | Grinding time | Pause time | No. of cycles | No. of repetitions |
|------------------|---------------|------------|---------------|--------------------|
| (rpm)            | (sec)         | (sec)      | (Cycle)       |                    |
| 3000             | 30            | 20         | 2             | 1                  |


Ground to a particle size of approx. 10-50 µm (<60 mesh, yield: 95 %)




\*60 mesh= 0.25 mm opening

Characteristics: A rubber refined from the sap of a rubber tree, it has excellent mechanical characteristics such as tensile strength, tear strength, and wear resistance, but is inferior in heat resistance, oil resistance, weather resistance, and ozone resistance.

**Application**: Tires, rubber belts, hoses, footwear, etc. .



Rubber band 0.53 g



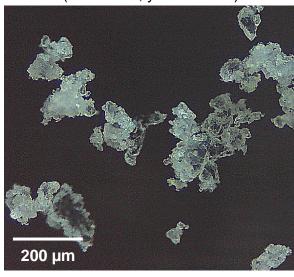
No significant difference was observed after two repetitions of Cryogenic grinding.

| Sample     | Room temp./Cryogenic | Sample                | Grinding ball | Milling<br>speed | Grinding time | Pause time  | No. of cycles | No. of |
|------------|----------------------|-----------------------|---------------|------------------|---------------|-------------|---------------|--------|
| amount (g) | container            | (rpm)                 | (sec)         | (sec)            | (Cycle)       | repetitions |               |        |
| 0.53       | Cryogenic            | Sample container L-Ti | WC-12Φ        | 2500             | 10-20         | 20          | 1             | 1-2    |

Characteristics: It has excellent low temperature properties, tear strength, impact strength, etc., is highly transparent, and has good appearance and luster. Moreover, it has a low specific density of 30 % or more compared to rubber and PVC, has excellent weather resistance, no ozone aging phenomenon, does not require a plasticizer, and is flexible and non-toxic.

**Application**: Used as a substitute for inorganic glass, it is used for building and vehicle windows, light fixture covers, lantern signs, road signs, daily necessities, office supplies, crafts, and watch windshields.




EVA 0.58 g

| Sample<br>amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|----------------------|-----------------------|-----------------------|---------------|
| 0.58                 | Cryogenic             | Sample container L-Ti | WC-12Φ        |

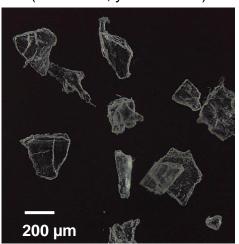
### Cryogenic grinding

| Milling<br>speed | Grinding time | Pause time | No. of cycles | No. of repetitions |
|------------------|---------------|------------|---------------|--------------------|
| (rpm)            | (sec)         | (sec)      | (Cycle)       |                    |
| 3000             | 20            | 20         | 2             | 1                  |

(<40 mesh, yield: 100 %)

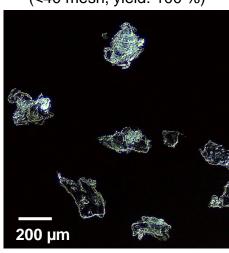


\*40 mesh= 0.42 mm opening


$$\begin{bmatrix} -C & C & CH_2-CH_2-O \\ 0 & 0 & CH_2-CH_2-O \end{bmatrix}_n$$

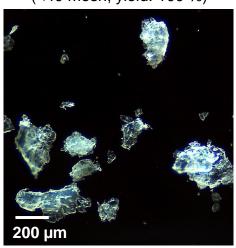
Sample: Three types of PET (cut pieces, 25 µm film, 250 µm film)

### PET (cut pieces)


Approx. 0.6 g ground

(<40 mesh, yield: 100 %)




### PET (25 µm film)

Ground after cutting to 5x5 mm pieces (<40 mesh, yield: 100 %)



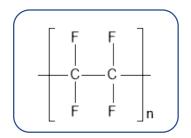
### **PET (250 μm film)**

Ground after cutting to 5x5 mm pieces (<40 mesh, yield: 100 %)



\*40 mesh= 0.42 mm opening

### PET (Cut pieces) 0.58 g


20€

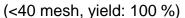
### All three samples have similar particle shapes.

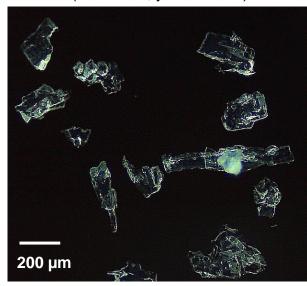
| Sample     | Room                      | Sample container Grind                       | Sample container   Grinding ball | Milling<br>speed | Grinding time | Pause time | No. of cycles | No. of      |
|------------|---------------------------|----------------------------------------------|----------------------------------|------------------|---------------|------------|---------------|-------------|
| amount (g) | nount (g) temp./Cryogenic |                                              |                                  | (rpm)            | (sec)         | (sec)      | (Cycle)       | repetitions |
| 0.5 - 0.6  | Cryogenic                 | Sample container<br>L-Ti<br>(PC insert tube) | WC-10Φ                           | 3000             | 30            | 10         | 4             | 1           |

Characteristics: Polytetrafluoroethylene (PTFE) has excellent heat and chemical resistance and is insoluble in hydrofluoric acid, which is highly corrosive. It has the lowest coefficient of friction of any material discovered to date.

Application: Coated mainly on the surface of cooking utensils, especially metal cooking utensils such as frying pans and pots. Widely used as processing materials in electrical equipment and chemical-mechanical applications that handle high-temperature corrosive fluids.



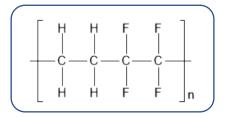




Sample Room temp. Sample **Grinding ball** amount (g) /Cryogenic container Sample WC-12Φ 0.58 Cryogenic container L-Ti

### **Cryogenic grinding**

| Milling<br>speed | Grinding time | Pause<br>time | No. of cycles | No. of repetitions |
|------------------|---------------|---------------|---------------|--------------------|
| (rpm)            | (sec)         | (sec)         | (Cycle)       |                    |
| 3000             | 20            | 10            | 1             | 1                  |

PTFE 0.58 g





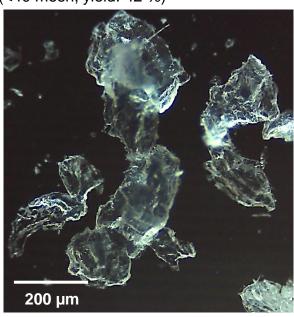

\*40 mesh= 0.42 mm opening

Characteristics: Polytetrafluoroethylene (PTFE) has excellent heat and chemical resistance and is insoluble in hydrofluoric acid, which is highly corrosive. It has the lowest coefficient of friction of any material discovered to date.

**Application**: Coated mainly on the surface of cooking utensils, especially metal cooking utensils such as frying pans and pots. Widely used as processing materials in electrical equipment and chemical-mechanical applications that handle high-temperature corrosive fluids.



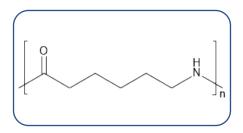



ETFE 0.58 g

| Sample amount (g) | Room temp.<br>/Cryogenic | Sample container      | Grinding ball |
|-------------------|--------------------------|-----------------------|---------------|
| 0.58              | Cryogenic                | Sample container L-Ti | WC-12Φ        |

### **Cryogenic grinding**

| Milling<br>speed | Grinding time | Pause time | No. of cycles | No. of repetitions |
|------------------|---------------|------------|---------------|--------------------|
| (rpm)            | (sec)         | (sec)      | (Cycle)       |                    |
| 2500             | 30            | 20         | 2             | 3                  |


Ground to a particle size of approx. 200 µm (<40 mesh, yield: 42 %)



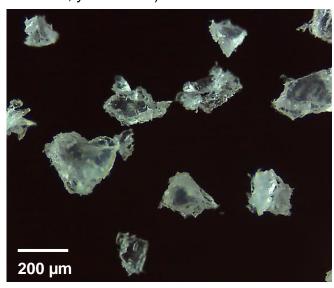
\*40 mesh= 0.42 mm opening

Characteristics: Nylon 6 fiber is tough and has high tensile strength, elasticity and luster. It is wrinkle and wear resistant and is resistant to chemicals such as acids and alkalis. It absorbs up to 2.4 % moisture but reduces tensile strength. Nylon 6 is generally white but can be dyed in a solution bath prior to fabrication.

**Application**: Textiles for clothing, bearings, liners, rollers, gears, insulating parts, food processing machine parts, packaging machine parts, etc.






Nylon 6 0.56 g

| Sample<br>amount (g) | Room temp.<br>/Cryogenic | Sample container | Grinding ball |
|----------------------|--------------------------|------------------|---------------|
| 0.56                 | Cryogenic                | Sample           | WC-12Ф        |

### **Cryogenic grinding**

| Milling<br>speed | Grinding time | Pause time | No. of cycles | No. of repetitions |
|------------------|---------------|------------|---------------|--------------------|
| (rpm)            | (sec)         | (sec)      | (Cycle)       |                    |
| 3000             | 20            | 20         | 2             | 1                  |

Ground to a particle size of approx. 100 - 200 µm (<40 mesh, yield: 94 %)

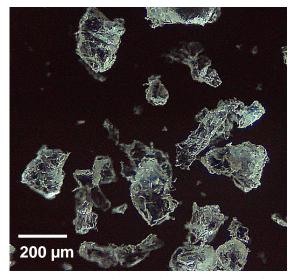


\*40 mesh= 0.42 mm opening

**Characteristics**: Nylon 6,6 is a polyamide with higher heat resistance and mechanical strength than nylon 6, with a melting point around 265 °C and specific gravity of 1.14. It is one of the strongest materials among engineering plastics. In addition to heat resistance, it has excellent oil resistance, wear resistance, and lubricating properties.

**Application**: Textiles for clothing, airbags, bearings, liners, rollers, gears, insulating parts, etc.




Nylon 6,6 0.58 g

| Sample amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|-------------------|-----------------------|-----------------------|---------------|
| 0.58              | Cryogenic             | Sample container L-Ti | WC-12Φ        |

### **Cryogenic grinding**

| Milling<br>speed | Grinding time | Pause time | No. of cycles | No. of repetitions |
|------------------|---------------|------------|---------------|--------------------|
| (rpm)            | (sec)         | (sec)      | (Cycle)       |                    |
| 3000             | 30            | 20         | 2             | 1                  |

(<40 mesh, yield: 100 %)



\*40 mesh= 0.42 mm opening

**Characteristics**: Excellent in wear resistance, impact resistance, oil resistance, and low-temperature properties. However, it does not have excellent heat resistance and is prone to degradation under high temperature and humidity.

**Application**: Paints, adhesives, sponges, sealants and caulking materials, fillers, heat insulators, soundproofing materials, textile products, footwear products, various automotive parts, etc.

$$\begin{bmatrix}
O & O & O \\
|| & O \\
O & R & O
\end{bmatrix}$$

$$\begin{bmatrix}
O & O & O \\
|| & O \\
N & R' & N & C
\end{bmatrix}$$

$$\begin{bmatrix}
O & N & R' & N & C
\end{bmatrix}$$

$$\begin{bmatrix}
O & N & R' & N & C
\end{bmatrix}$$



PU 0.55 g

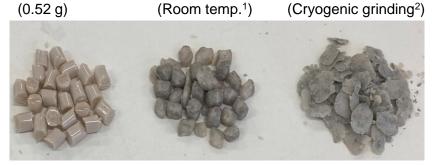
| Sample<br>amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|----------------------|-----------------------|-----------------------|---------------|
| 0.55                 | Cryogenic             | Sample container L-Ti | WC-12Φ        |

### **Cryogenic grinding**

| Milling<br>speed | Grinding time | Pause<br>time | No. of cycles | No. of repetitions |
|------------------|---------------|---------------|---------------|--------------------|
| (rpm)            | (sec)         | (sec)         | (Cycle)       |                    |
| 3000             | 20            | 20            | 2             | 1                  |

(<40 mesh, yield: 97 %)

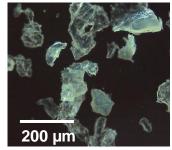



\*40 mesh= 0.42 mm opening

Characteristics: This thermoplastic resin has very high thermal resistance (glass transition temperature of 143 °C and melting point of 343 °C). It also has excellent flame resistance, mechanical properties, fatigue resistance, abrasion resistance, dimensional stability, and processability, and can be processed by ordinary injection molding machines, or made into film or nonwoven fabric.

$$\begin{bmatrix} -0 & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$$

#### Sample: PEEK pellets (no pretreatment)


Pellets 3000 rpm x 30 sec 3000 rpm x 30 sec



- 1. In room-temperature grinding, the whole sample turns blackish and can only be ground marginally.
- 2. At one cryogenic grinding, the pellets were deformed into small flakes.

Pellets 3000 rpm x 30 sec (0.52 g)(Cryogenic grinding 4 times)





\*40 mesh= 0.42 mm opening

- Cryogenic grinding was repeated four times to obtain finely ground particles of 40 mesh or less. Yield: 83 %.
- In addition, with 1 g of sample, less than 40 mesh was obtained by two additional repetitions of cryogenic grinding. Yield: 58 %.

| Sample     | Room temp./Cryogenic   | Sample                | Grinding ball | Milling<br>speed | Grinding time | Pause time | No. of cycles | No. of      |
|------------|------------------------|-----------------------|---------------|------------------|---------------|------------|---------------|-------------|
| amount (g) | 1 1 1 1 1 1 1          | container             | 3 3 3         | (rpm)            | (sec)         | (sec)      | (Cycle)       | repetitions |
| 0.52       | Room temp. · Cryogenic | Sample container L-Ti | WC-12Φ        | 3000             | 30            | 20         | 1             | 1-4         |

Characteristics: One of the super engineering polymers, it is flame retardant with excellent chemical resistance, water resistance, and thermal resistance. Even if it were to burn, it would generate little smoke. It also has excellent electrical properties, weather resistance, and dielectric breakdown strength. It is used in aircraft parts.

#### Pretreatment:

A portion of sample was cut into approx. 5 mm pieces using nippers.



PEI 0.53 g

| Sample amount (g) | Room temp.<br>/Cryogenic | Sample container      | Grinding ball |
|-------------------|--------------------------|-----------------------|---------------|
| 0.53              | Room temp.               | Sample container L-Ti | WC-12Ф        |

### **Cryogenic grinding**

| Milling | No. of |       |         |             |
|---------|--------|-------|---------|-------------|
| speed   | time   | time  | cycles  | repetitions |
| (rpm)   | (sec)  | (sec) | (Cycle) |             |
| 3000    | 20     | 20    | 10      | 1           |

(<40 mesh, yield: 92 %)

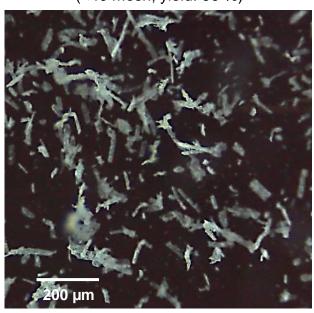


\*40 mesh= 0.42 mm opening

#### > Pretreatment:

Copy paper is cut with a knife to about 10 mm in size as shown below.

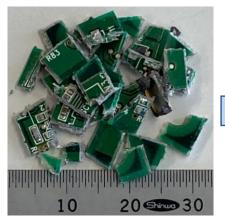



Copy paper 0.23 g

| Sample amount (g) | Room temp. /Cryogenic | Sample container       | Grinding ball |
|-------------------|-----------------------|------------------------|---------------|
| 0.23              | Cryogenic             | Sample container I -Ti | WC-12Φ        |

### **Cryogenic grinding**

| Milling<br>speed | Grinding time | Pause time | No. of cycles | No. of repetitions |
|------------------|---------------|------------|---------------|--------------------|
| (rpm)            | (sec)         | (sec)      | (Cycle)       |                    |
| 3000             | 20            | -          | 1             | -                  |

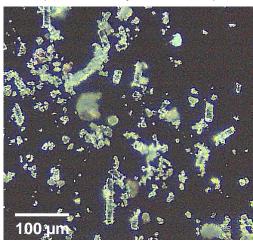

(<40 mesh, yield: 90 %)



\*40 mesh= 0.42 mm opening

#### **Pretreatment:**

Portions of a circuit board are cut into approx. 10 mm pieces using nippers.




Electronic circuit boards (2.1 g)

Room temp. grinding



(<40 mesh, yield: 100 %)



\*40 mesh= 0.42 mm opening

#### Grinding ball WC-10Φ was selected:

When WC-12Φ was used, the grinding ball was stuck between pieces of the circuit board, making them ungrindable.

| Sample     | Room temp./Cryogenic      | Sample                | Grinding ball | Milling<br>speed | Grinding time | Pause time | No. of cycles | No. of      |
|------------|---------------------------|-----------------------|---------------|------------------|---------------|------------|---------------|-------------|
| amount (g) | recom temps or you can be | container             | Ormanig ban   | (rpm)            | (sec)         | (sec)      | (Cycle)       | repetitions |
| 2.1        | Room temp.                | Sample container L-Ti | WC-10Ф        | 2500             | 30            | 20         | 10            | -           |

# Biopolymer grinding application examples

| File              | Biopolymer                |                     |  |
|-------------------|---------------------------|---------------------|--|
| IQ MILL_Bio_001-1 | Boar canines              | Teeth               |  |
| IQ MILL_Bio_001-2 | Fox, raccoon, raccoon dog | Teeth               |  |
| IQ MILL_Bio_002   | Shellfish                 | Shellfish shell     |  |
| IQ MILL_Bio_003   | Bark of moso bamboo       | Bamboo bark         |  |
| IQ MILL_Bio_004   | Hemp cord                 | Hemp                |  |
| IQ MILL_Bio_005   | Wood chip                 | Wood                |  |
| IQ MILL_Bio_006   | Cotton                    | Cotton              |  |
| IQ MILL_Bio_007   | Dried squid               | Dry squid           |  |
| IQ MILL_Bio_008   | Beef jerky                | Beef jerky          |  |
| IQ MILL_Bio_009   | Shell strap               | Shellfish string    |  |
| IQ MILL_Bio_010   | Sea squirt                | Sea squirt          |  |
| IQ MILL_Bio_011   | Seaweed stem              | Wakame seaweed stem |  |

Characteristics: Wild boar teeth are enamel, hard as crystal, and very difficult to crush. These were used to study the effects of strontium in the 2011 Fukushima nuclear accident.

#### >Pretreatment:

Canine teeth are cut into 3-5 mm pieces with nippers.



| Sample amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|-------------------|-----------------------|-----------------------|---------------|
| 1 canine tooth    | Room temp.            | Sample container L-Ti | Zr-6Ф x 1     |

### Room temp. grinding

| Milling<br>speed | Grinding time | Pause time | No. of cycles | No. of repetitions |
|------------------|---------------|------------|---------------|--------------------|
| (rpm)            | (sec)         | (sec)      | (Cycle)       |                    |
| 1500             | 60            | 10         | 3             | -                  |



Sample courtesy of prof. H. Ishiniwa (Fukushima University)

Characteristics: The teeth of these animals are enamel, as hard as quartz, making them very hard, and extremely difficult to grind. They were used in a study of the 2011 Fukushima nuclear accident impact to investigate the impact of the strontium.

**Pretreatment:** A tooth is cut into 3-5 mm pieces with nippers.

raccoon Fox raccoon dog



Sample courtesy of prof. Y. Takagai (Fukushima University)

| Sample amount (g) | Room temp.<br>/Cryogenic | Sample container      | Grinding ball |  |
|-------------------|--------------------------|-----------------------|---------------|--|
| 1 canine tooth    | Room temp.               | Sample container L-Ti | Zr-12Φ x 1    |  |

### Room temp. grinding

|         | Grinding conditions |       |         |             |  |  |
|---------|---------------------|-------|---------|-------------|--|--|
| Milling | Grinding            | Pause | No. of  | No. of      |  |  |
| speed   | time                | time  | cycles  | repetitions |  |  |
| (rpm)   | (sec)               | (sec) | (Cycle) |             |  |  |
| 2000    | 20                  | 10    | 2       | -           |  |  |

After grinding of fox teeth (Other teeth are similarly ground.)



5 cm



> Pretreatment Samples are cut into about 10 mm pieces using nippers.



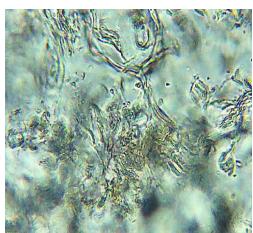
| Sample<br>amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|----------------------|-----------------------|-----------------------|---------------|
| 2.0                  | Room temp.            | Sample container L-Ti | Zr-12Φ        |

| Milling | Grinding | Pause | No. of  | No. of      |
|---------|----------|-------|---------|-------------|
| speed   | time     | time  | cycles  | repetitions |
| (rpm)   | (sec)    | (sec) | (Cycle) |             |
| 2500    | 20       | 20    | 4       | 1           |

This is difficult to grind. Used for DNA research.

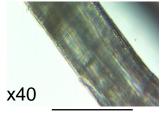


Sample courtesy of prof. S. Kaneko (Fukushima University)


Disposal PP Container (2 mL): DNeasy® Plant Mini Kit Buffer solution 0.3 mL

| Sample<br>amount (g) | Room temp.<br>/Cryogenic | Sample container                  | Grinding ball          |
|----------------------|--------------------------|-----------------------------------|------------------------|
| 0.53                 | Room temp./wet           | Disposable PP<br>Container (2 mL) | Zr-5Φ x 1<br>Zr-3Φ x 1 |

### Room temp. wet grinding


| Milling<br>speed | Grinding time | Pause time | No. of cycles | No. of repetitions |
|------------------|---------------|------------|---------------|--------------------|
| (rpm)            | (sec)         | (sec)      | (Cycle)       |                    |
| 2000             | 10            | 10         | 2             | -                  |







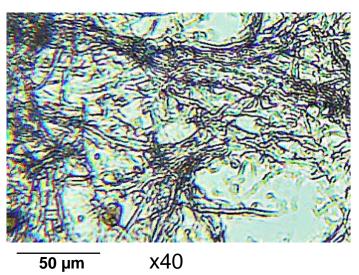
**Pretreatment:** Hemp twines are cut into 3-5 mm pieces with scissors.



50 µm



Approx.10 mm; 7.7 mg (Before cutting)


Container: Disposable PP Container (2 mL):Distilled water 1.0 mL

| Sample amount (g) | Room temp.<br>/Cryogenic | Sample container        | Grinding ball |
|-------------------|--------------------------|-------------------------|---------------|
| 0.53              | Room temp.<br>wet        | Disposable PP container | Zr-6Ф x 2     |

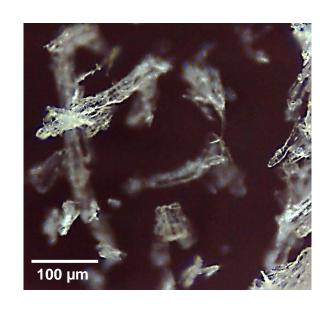
### Room temp. wet grinding

|                  | Grinding conditions |            |               |                    |  |  |
|------------------|---------------------|------------|---------------|--------------------|--|--|
| Milling<br>speed | Grinding time       | Pause time | No. of cycles | No. of repetitions |  |  |
| (rpm)            | (sec)               | (sec)      | (Cycle)       |                    |  |  |
| 1500             | 60                  | 10         | 10            | -                  |  |  |





**Pretreatment:** Toothpicks are cut into 5 mm pieces with nippers.




Wood chips 0.32 g

| Sample amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|-------------------|-----------------------|-----------------------|---------------|
| 0.32              | Room temp.            | Sample container L-Ti | Zr-12Φ        |

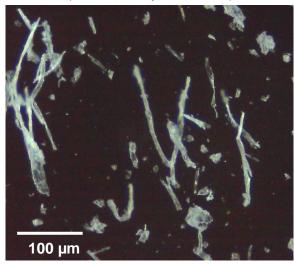
### Room temp. grinding

| Grinding conditions |       |       |         |   |
|---------------------|-------|-------|---------|---|
| Milling speed       | 9   9 |       |         |   |
| (rpm)               | (sec) | (sec) | (Cycle) |   |
| 3000                | 30    | 20    | 3       | - |



**Pretreatment**: A piece of cotton is cut into 3-5 mm pieces with scissors.




Cotton 0.21 g

| Sample amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|-------------------|-----------------------|-----------------------|---------------|
| 0.21              | Room temp.            | Sample container L-Ti | WC-12Φ        |

### Room temp. grinding

| Grinding conditions |          |       |         |   |
|---------------------|----------|-------|---------|---|
| Milling speed       | <u> </u> |       |         |   |
| (rpm)               | (sec)    | (sec) | (Cycle) |   |
| 3000                | 20       | 20    | 10      | - |

(<40 mesh, yield: 92 %)

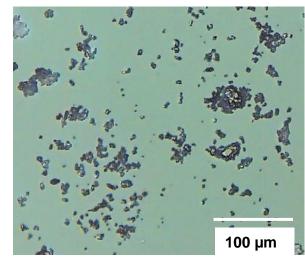


\*40 mesh= 0.42 mm opening

#### >Pretreatment:

Dried squid is cut into 3-5 mm pieces with nippers.




\* A thin PC insert tube is installed in the container.

| Sample amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|-------------------|-----------------------|-----------------------|---------------|
| 0.61              | Cryogenic             | Sample container L-Ti | WC-12Φ        |

### **Cryogenic grinding**


| Milling<br>speed | 9   9 |       |         |   |
|------------------|-------|-------|---------|---|
| (rpm)            | (sec) | (sec) | (Cycle) |   |
| 3000             | 30    | -     | 1       | - |

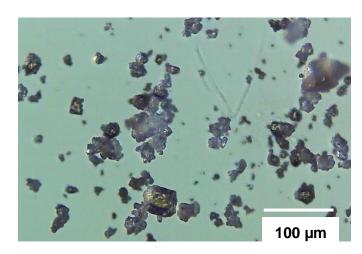




#### >Pretreatment:

Beef jerky is cut into 3-5 mm pieces with nippers.




\* A thin PC insert tube is installed in the container.

| Sample amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|-------------------|-----------------------|-----------------------|---------------|
| 1.4               | Cryogenic             | Sample container L-Ti | WC-12Φ        |

### **Cryogenic grinding**

| Grinding conditions           |       |       |         |             |
|-------------------------------|-------|-------|---------|-------------|
| Milling Grinding Pause No. of |       |       |         | No. of      |
| speed                         | time  | time  | cycles  | repetitions |
| (rpm)                         | (sec) | (sec) | (Cycle) |             |
| 3000                          | 30    | -     | 1       | -           |

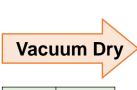




**Pretreatment:** A shell string is cut into 3-5 mm pieces with nippers.



\* A thin PC insert tube is installed in the container.


| Sample amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|-------------------|-----------------------|-----------------------|---------------|
| 0.84              | Cryogenic             | Sample container L-Ti | WC-12Φ        |

### **Cryogenic grinding**

| Grinding conditions |                    |       |         |             |
|---------------------|--------------------|-------|---------|-------------|
| Milling             |                    |       |         | No. of      |
| speed               | d time time cycles |       |         | repetitions |
| (rpm)               | (sec)              | (sec) | (Cycle) |             |
| 3000                | 30                 | -     | 1       | -           |

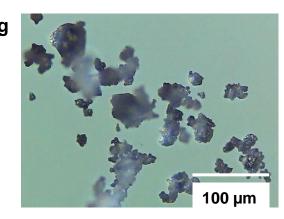


Clay-like solids




| Temp. | Drying time |
|-------|-------------|
| (°C)  | (hour)      |
| 40    | 24          |






**Powder lumps** 

#### After room temp. grinding



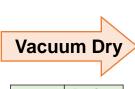
| Milling<br>speed | Grinding time | Pause time | No. of cycles |
|------------------|---------------|------------|---------------|
| (rpm)            | (sec)         | (sec)      | (Cycle)       |
| 1500             | 10            | -          | 1             |



**Pretreatment:** A piece of sea squirt is cut into about 3-5 mm pieces with nippers.



\* A thin PC insert tube is installed in the container.


| Sample amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|-------------------|-----------------------|-----------------------|---------------|
| 0.76              | Cryogenic             | Sample container L-Ti | WC-12Φ        |

### **Cryogenic grinding**

| Grinding conditions |               |            |               |                    |
|---------------------|---------------|------------|---------------|--------------------|
| Milling<br>speed    | Grinding time | Pause time | No. of cycles | No. of repetitions |
| (rpm)               | (sec)         | (sec)      | (Cycle)       |                    |
| 3000                | 30            | -          | 1             | -                  |

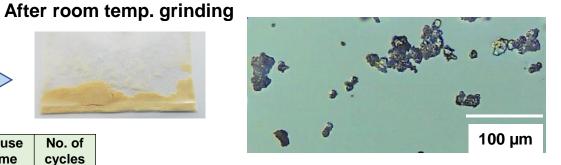


Clay-like solids

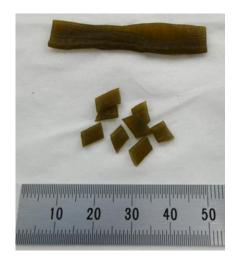


| Temp. | Drying time |
|-------|-------------|
| (°C)  | (hour)      |
| 40    | 24          |






| Milling<br>speed | Grinding time | Pause time | No. of cycles |
|------------------|---------------|------------|---------------|
| (rpm)            | (sec)         | (sec)      | (Cycle)       |
| 1500             | 10            | -          | 1             |






**Powder lumps** 



**Pretreatment:** Wakame stem is cut into 3-5 mm pieces with nippers.



\* A thin PC insert tube is installed in the container.

| Sample amount (g) | Room temp. /Cryogenic | Sample container      | Grinding ball |
|-------------------|-----------------------|-----------------------|---------------|
| 1.1               | Cryogenic             | Sample container L-Ti | WC-12Ф        |

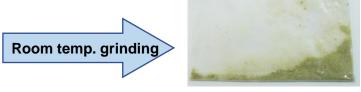
### **Cryogenic grinding**

| Grinding conditions |          |       |         |             |
|---------------------|----------|-------|---------|-------------|
| Milling             | Grinding | Pause | No. of  | No. of      |
| speed               | time     | time  | cycles  | repetitions |
| (rpm)               | (sec)    | (sec) | (Cycle) |             |
| 3000                | 30       | -     | 1       | -           |

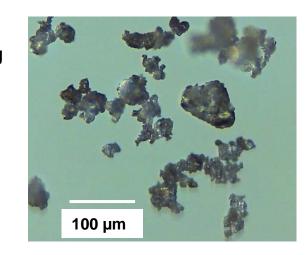


Paste-like solids

| Vacuum Dry |             |  |
|------------|-------------|--|
|            |             |  |
| Temp.      | Drying time |  |
| (00)       | /I          |  |


| Temp. | Drying time |
|-------|-------------|
| (°C)  | (hour)      |
| 40    | 24          |






Solid (hard)

#### After room temp. grinding



|       | Grinding | Pause | No. of  |
|-------|----------|-------|---------|
| speed | time     | time  | cycles  |
| (rpm) | (sec)    | (sec) | (Cycle) |
| 2500  | 10       | -     | 1       |



# **Glossary**

| Term                    | Description                                                                                                                  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------|
| PC insert tube          | Polycarbonate tube that is inserted to sample container.                                                                     |
| Disposable PP container | Disposable polypropylene container                                                                                           |
| Sample container L-Ti   | Sample container, large, made of titanium                                                                                    |
| WC-12Ф grinding ball    | Tungsten carbide (WC) grinding ball, 12 mm diameter                                                                          |
| Zr-12Φ grinding ball    | Zirconia or zirconium dioxide (ZrO <sub>2</sub> ) grinding ball, 12 mm diameter                                              |
| Milling speed           | Grinding speed or rotation speed of motor                                                                                    |
| Grinding time           | Time during which sample is ground                                                                                           |
| Pause time              | Time between runs or time during which grinding is stopped                                                                   |
| No. cycles              | No. of grinding sequences including grinding time and pause.                                                                 |
| No. of repetitions      | No. of whole programmed grinding cycles that can include liquid nitrogen cooling, grinding, and pause time when cryomilling. |



